Model

Author

Nithura

The mathematical models used are the Gaussian model and the categorical model.

Gaussian:

Categorical:

\[ \text{Technology Amount} = \beta_0 + \beta_1 \cdot \text{Cranial Capacity} + \beta_2 \cdot \text{Manual Dexterity} + \epsilon \]

\[ \log \left( \frac{P(\text{Intermediate})}{P(\text{Simple})} \right) = \beta_{0,\text{Intermediate}} + \beta_{1,\text{Intermediate}} \cdot \text{Cranial Capacity} + \beta_{2,\text{Intermediate}} \cdot \text{Manual Dexterity} \]

\[ \log \left( \frac{P(\text{Complex})}{P(\text{Simple})} \right) = \beta_{0,\text{Complex}} + \beta_{1,\text{Complex}} \cdot \text{Cranial Capacity} + \beta_{2,\text{Complex}} \cdot \text{Manual Dexterity} \]

Evaluating Bias using Distributions of Observed vs Relevant Data:

Characteristic

Beta

95% CI

1
Cranial_Capacity 0.00 0.00, 0.00
action_var_num 1.2 1.1, 1.2
1

CI = Credible Interval